Курсовая работа: Строение конечной группы 24-го порядка, заданной образующими и определяющими соотношениями G
со всеми элементами группы. Центр группы G является подгруппой и обозначается Z(G) . Если имеется таблица умножений, то центр образуют те элементы, для
которых соответствующая строка в таблице умножений равна столбцу с тем же
номером.
2. Практическая часть
Рассмотрим группу G с образующими элементами x и y, введенной
бинарной операцией (∙), которую будем называть умножением.
G=< x, y| x 2 = y 2 =( xy )3 > , n = 24.
По определению группы операция умножения ассоциативна, а элемент e
является единицей, и для нее справедливы известные соотношения. Минимальной
системой образующих для нашей группы будет являться система из двух
элементов - {x, y}. Определим единицу данной группы.
xy = yxyx y 2 =( yxyxxyxy ) xy , yxyxxyxy = e , x 8 = y 8 = e
2.1. Доказательство того, что в группе n элементов.
Путем анализа определяющих соотношений убедиться, что число
элементов этой группы действительно равно n. Выразить все элементы
через образующие.
Рассмотрим каждый элемент группы в виде слова, записанного с помощью букв x и
y. Будем для начала рассматривать слова длины 1, т.е. элементы x и y. Путем
дописывания справа от имеющегося слова букв x или y, будем получать слова
длины на единицу больше, чем данное. Новое слово будем пытаться свести к уже
имеющимся с помощью определяющих соотношений: x 8 = e , y 8 = e , x 2 = y 2 =( xy )3 .
Если нам это удается, то для полученного “старого” слова
процесс прекращаем, иначе продолжаем действовать по той же схеме, т.е.
дописываем буквы и пытаемся свести полученное слово к уже имеющимся. В
итоге, каждое неприводимое слово будет новым элементом группы.
1. e
2. x
3. y
4. x2
5. xy= x2 yxyx