Курсовая работа: Уравнения смешанного типа

(13)

Опираясь на асимптотические формулы функций Бесселя

и модифицированных функций Бесселя


в окрестности нуля, первое из равенств (13) выполнено при и любых и , а второе равенство выполнено при

Подставим полученные выражения для постоянных и в (12), тогда функции примут вид

Отметим, что для функций (14) выполнено равенство

Отсюда и из равенств (13) вытекает, что является продолжением решения на промежуток и,наоборот, является продолжением решения на промежуток . Следовательно, функции (14) принадлежат классу и удовлетворяет уравнению (9) всюду на . Теперь на основании (10) и (11) получим систему для нахождения и :


(15)

Если определитель системы (15):

(16)

то данная система имеет единственное решение

(17)

. (18)

С учётом (17) и (18) из (14) найдём окончательный вид функций

(19)

Где

(20)

(21)

(22)

(23)


Дифференцируя дважды равенство (7) с учётом уравнения (1) и условий (4) для функции , получим однородное дифференциальное уравнение

(24)

с граничными условиями

К-во Просмотров: 428
Бесплатно скачать Курсовая работа: Уравнения смешанного типа