Курсовая работа: Уравнения смешанного типа

Где


Отсюда видно, что если, например,где то при

Тем самым справедлива следующая

Лемма 1. Существует и постоянная такие, что при всех и больших справедлива оценка

(37)

Рассмотрим следующие отношения:

,

Лемма 2. При любом для достаточно больших n справедливы оценки:

;

;

где , здесь и в дальнейшем, положительные постоянные.

Доказательство. С учётом (36) функция примет вид


Оценим функцию при и больших :

.

На основании поведений функций в окрестности бесконечно-удалённой точки и леммы 1, получим

(38)

где здесь и далее произвольные постоянные.

При 0 и n>>1 в силу асимптотических формул имеем

(39)

Сравнивая (38) и (39) при любом получим

К-во Просмотров: 435
Бесплатно скачать Курсовая работа: Уравнения смешанного типа