Курсовая работа: Випадковий процес в математиці
Для доказу запишемо очевидні рівності:
k(?+??)-k(?) = M[X(t+?+??)X(t)] - M[X(t+?)X(t)] =
= M{X(t)[X(t+?+??) - X(t+?)]}
Потім, застосовуючи нерівність Шварца до співмножників у фігурній дужці й з огляду на співвідношення:
K(t, t') = k(?) = k(-?), ? = t' - t.
K(0) = В = σ2 ; |k(τ)| ≤ k(0); ∑ ∑ άi αj k(ti - tj ) ≥ 0
Одержимо:
0 ≤ [k(τ+∆τ)-k(τ)]2 ≤ M[X(t)2 ]M[|X(t+τ+∆τ)-X(t+τ)|2 ] =
= 2D[D-k(??)].
Переходячи до межі при ??>0 і беручи до уваги умова теореми про безперервність k(?) у крапці ?=0, а також перша рівність системи
K(0) = В = σ2 , знайдемо
Lim k(?+??) = k(?)
Оскільки тут ? - довільне число, теорему варто вважати доведеної.
4.Ергодична властивість стаціонарних випадкових процесів
Нехай Х(t) - стаціонарний випадковий процес на відрізку часу [0,T] з характеристиками
M[X(t)] = 0, K(t, t') = M[X(t)X(t')] = k(?),
? = t' - t, (t, t') € T?T.
Ергодична властивість стаціонарного випадкового процесу полягає в тім, що по досить тривалій реалізації процесу можна судити про його математичне очікування, дисперсію, кореляційній функції.
Більш строго стаціонарний випадковий процес Х(t) будемо називати ергодичним по математичному очікуванню, якщо
Lim M {|(1/ T)∫ X(t)dt|2 } = 0
Теорема
Стаціонарний випадковий процес Х(t) з характеристиками:
M[X(t)] = 0, K(t, t') = M[X(t)X(t')] = k(?),
? = t' - t, (t, t') € T?T
є ергодичним по математичному очікуванню тоді й тільки тоді, коли
Lim (2/ T) ? k(?) (1 - ?/t)d? = 0.
Для доказу, мабуть, досить переконатися, що справедливо рівність
M{(1/ T) ∫X(t)dt|2 } = (2/ T) ∫ k(?) (1 - ?/t)d?
Запишемо очевидні співвідношення