Лабораторная работа: Методы интегрирования
Опр. 2. Если функция определена на отрезке , а - разбиение с отмеченными точками этого отрезка, то сумма
Называется интегральной суммой функции , соответствующей разбиению с отмеченными точками отрезка .
Опр. 3. Число называется пределом интегральной суммы при , если для любого найдется число такое, что для любого разбиения с отмеченными точками отрезка , параметр которого имеет место соотношение
для любого набора
То этот предел называют определенным интегралом от функции по сегменту и обозначают
Опр. 4. Функция называется интегрируемой по Риману на отрезке, если существует предел вида II, причем функция называется подынтегральной функцией, число - нижний предел интегрирования, число - верхний предел интегрирования. Множество интегрируемых на функций будем обозначать
Пример 1. Вычислить исходя из определения интеграла .
Решение: по определению при ,.
Разобьем отрезок [0,1] на n равных частей точками деления Длина каждого частичного отрезка причем
В качестве точек возьмем правые концы частичных отрезков
Составим интегральную сумму
Предел этой интегральной суммы при равен
Следовательно,
Свойства определенного интеграла:
I. Теорема I: Если и – интегрируемые на отрезке функции, то их линейная комбинация интегрируема на данном отрезке, причем
, интегрируема на
Если < < и то , и имеет место равенство < <
Сформулируйте остальные свойства определенного интеграла.
Теорема Ньютона-Лейбница.
Если -ограниченная, с конечным множеством точек разрыва функция, то где -любая из первообразных функций на отрезке [a,b].
Пример 2. Вычислить интеграл
Решение: функция определена на R.
Замечание: Вычисляя интегралы с помощью формулы Ньютона-Лейбница, следует обратить внимание на условия законности ее применения.
Эта формула применяется для вычисления определенного интеграла от непрерывной на отрезке функции лишь тогда, когда равенство выполняется на всем отрезке .
Например, при вычислении интеграла нельзя брать в качестве первообразной функции , так как при нарушается равенство ( при это равенство имеет место). При функция разрывна и не может быть первообразной.
Пример 3. Можно ли применить формулу Ньютона-Лейбница к интегралу ?
Решение: Нет, нельзя! Если формально вычислять этот интеграл по формуле Ньютона-Лейбница, то получим неверный результат. Действительно, . Но подынтегральная функция и, следовательно, интеграл не может равняться отрицательному числу. Суть дела заключается в том, что подынтегральная функция имеет бесконечный разрыв в точке , принадлежащей промежутку интегрирования. Следовательно, применение здесь формулы Ньютона-Лейбница незаконно.
Варианты
Вычислить интегралы: 1) – с помощью предельного перехода от интегральных сумм;