Лабораторная работа: Методы интегрирования

Вопросы к лабораторной работе №7

Что называется определенным интегралом от функции на отрезке ?

Зависит ли величина определенного интеграла от способа разбиения ? А от выбора промежуточного значения точек ?

Каков геометрический смысл интегральной суммы определенного интеграла?

Укажите необходимое условие интегрируемости функции.

Как составляются суммы Дарбу? Какими свойствами они обладают?

Как связаны суммы Дарбу с интегральными суммами при фиксированном разбиении?

Каковы основные свойства определенных интегралов?

Сформулируйте и докажите теорему о среднем. Каков ее геометрический смысл?

Используя теорему о среднем, докажите непрерывность определенного интеграла с переменным верхним пределом как функции верхнего предела.

Известно, что непрерывная в данном промежутке функция всегда имеет в нем первообразную. Из какого свойства определенного интеграла это следует?

ЛАБОРАТОРНАЯ РАБОТА №8

Замена переменной в определенном интеграле и интегрирование по частям

Интегрирование по частям в определенном интеграле.

Утверждение 1: Если и дифференцируемы на отрезке с концами и ; то справедливо соотношение:

,

где

Пример 1. Вычислить интеграл

Решение: положим , т. к. функции непрерывны и имеют производные на отрезке .

Пользуясь формулой интегрирования по частям, получим

Замена переменной в определенном интеграле.

Утверждение 2: Если непрерывно-дифференцируемое отображение отрезка a< t <b в отрезок такое что и , то при любой непрерывной на [;] функции , функция непрерывна на отрезке [a;b] и справедливо равенство .

Пример 2. Вычислить интеграл

Решение: Применим подстановку считая , что функция на отрезке удовлетворяет всем условиям теоремы о замене переменной в определенном интеграле, так как она непрерывно – дифференцируема, монотонна и и так , так как на промежутке. Таким образом

Варианты

Вычислить интегралы:

Вопросы к лабораторной работе №8

При каких условиях применима формула замены переменной в определенном интеграле?

Выведите указанную формулу.

К-во Просмотров: 496
Бесплатно скачать Лабораторная работа: Методы интегрирования