Лабораторная работа: Методы интегрирования

Если - число целое, то мы получим выражение, изученное в I. Именно, если через обозначить наименьшее общее кратное знаменателей , то будем иметь выражение вида для рационализации которого достаточна подстановка .

Пусть - целое. Преобразуем теперь данное выражение подстановкой . Тогда и положив для краткости будем иметь

(3)

Если – целое число, то снова приходим к выражению изученного типа (2). Если обозначить через знаменатель дроби , то выражение будет иметь вид Рационализации подынтегрального выражения можно достигнуть сразу подстановкой:

Пусть- целое.

Перепишем второй из интегралов (3) так: При – целом снова имеем случай (2). Преобразованное выражение имеет вид: Подынтегральное выражение рационализируется сразу подстановкой .

Оба интеграла (3) выражаются в конечном виде, если оказывается целым одно из чисел: ; или одно из чисел ,

Пример 3. , где .

т. к. , то имеем 2-й случай интегрируемости.

Заметив, что , положим

Пример 4., где - третий случай интегрируемости, т. к. Заметив, что положим

III. Интегрирование выражений вида . Подстановки Эйлера.

Рассмотрим интеграл

(*)

где квадратный трехчлен не имеет равных корней.

Пусть >0. Тогда полагают . Возводя это равенство в квадрат, найдем отсюда:

Если полученные выражения подставить в (*) , то вопрос сведется к интегрированию рациональных функции от . В результате, возвращаясь к , нужно будет положить .

Пусть >0. В этом случае можно положить . Положим

Пусть имеем различные вещественные корни l и m .Тогда этот трехчлен разлагается на линейные множители Положим

Если подставить сюда , то получим

Применим 2-ую подстановку

; ;

=

Подставив получим

Варианты

Вычислить интегралы:

ЛАБОРАТОРНАЯ РАБОТА №7

Определенный интеграл. Свойства определенного интеграла. Вычисление определенных интегралов

Опр. 1. Разбиением отрезка называется множество точек , таких что , внутри каждой части возьмем произвольную точку , набор точек называется разбиением с отмеченными точками

К-во Просмотров: 490
Бесплатно скачать Лабораторная работа: Методы интегрирования