Лабораторная работа: Методы интегрирования

где = 2,3,4,…..;

-вещественные числа.

Рассмотрим интегралы от данных дробей I-IV:

Для интегрирования дробей вида III,IV в трехчлене выделим полный квадрат:

Делаем подстановку:

и

В случае III имеем:

Если

, то

.

Если

, то

В случае IV будем иметь:

Первый интеграл вычисляется с помощью подстановки: ,

,

а второй интеграл вычисляется с помощь рекуррентной формулы. Пусть

, где =2,3,4…

Проинтегрируем интеграл по частям, положив

,

А затем, добавив и вычтя в числителе получившиеся под знаком интеграла функции и произведя деление так, как это указано ниже, получим

,

то есть

,

m=2,3,4….(*)

Интервал легко вычисляется. Формула (*) позволяет вычислить ; зная же , по этой же формуле можно найти значение и , продолжая процесс дальше, можно найти и выражение для любого интеграла .

Пример1

Пусть и - многочлены с действительными коэффициентами.

Метод неопределенных коэффициентов состоит в следующем: для данной дроби пишется разложение:

в котором коэффициенты считаются неизвестными ( ; ;). После этого равенства приводятся к общему знаменателю и у получившихся в числителе многочленов приравниваются коэффициенты. При этом, если степень многочлена равна , то, вообще говоря, в числителе правой части равенства (**) после приведения к общему знаменателю получается многочлен степени , т.е. многочлен с коэффициентами; число же неизвестных так же равняется : . Таким образом, мы получаем систему уравнений с неизвестными.

К-во Просмотров: 489
Бесплатно скачать Лабораторная работа: Методы интегрирования