Лабораторная работа: Методы интегрирования

Федеральное агентство по образованию

Государственное общеобразовательное учреждение высшего профессионального образования

Калмыцкий Государственный Университет

Лабораторный практикум для студентов

факультета математики и физики

Методы интегрирования

Элиста 2006

ЛАБОРАТОРНАЯ РАБОТА №1

Первообразная. Неопределенный интеграл

Опр1. Пусть функция определена на некотором конечном или бесконечном промежутке числовой оси R. Функция , определенная на этом промежутке, называется первообразной функцией (или просто первообразной) функции на , если

функция непрерывна на ;

во всех внутренних токах x промежутка функция имеет производную и ;

Пример1. Пусть . Тогда функция , является первообразной для так как:

функция определена на области определения функции (т.е. на R);

==.

Заметим, что функции вида , и им подобные также являются первообразными для функции , т. к.

Функции , непрерывны на R (области определения функции);

; .

Таким образом, если - первообразная функции на промежутке , то для любой постоянной функция тоже является первообразной функции на .

Опр 2. Совокупность всех первообразных функции , определенной на некотором промежутке , называется неопределенным интегралом функции на этом промежутке и обозначается . Символ называется знаком интеграла, - подынтегральной функцией.

Если какая-либо первообразная функции на , то пишут .

Основные свойства неопределенного интеграла:

Пусть функция непрерывна на промежутке и дифференцируема в его внутренних точках, тогда или, что тоже самое .

Пусть функция имеет первообразную на промежутке, тогда для любой внутренней точки промежутка имеет место равенство или, что то же .

Если функции и имеют первообразные на , то и функция также имеет первообразную на , причем .

Обобщение:.

Если функция имеет первообразную на промежутке и – число, то функция также имеет на первообразную, причем при справедливо равенство

Таблица основных интегралов

Таблица дифференциалов:

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 485
Бесплатно скачать Лабораторная работа: Методы интегрирования