Лабораторная работа: Методы интегрирования
Этой таблицей можно пользоваться.
Так, например, выражение мы будем представлять в виде или выражения в виде и говорить, что подводим функцию или , соответственно, под знак дифференциала.
Замечание: .
Интегралы, получающиеся из табличных «линейным сдвигом» аргумента (т.е. интегралы вида , , ,…) будем называть почти табличными интегралами.
Пример2.
Варианты
Вычислить интегралы:
В-1
В-2
Вопросы к лабораторной работе №1
Дайте определение первообразной функции или интеграла от заданной функции в заданном промежутке.
Какова общая формула записи всех первообразных от заданной функции ?
Что называется неопределенным интегралом от ; как он обозначается? Что такое подынтегральное выражение и подынтегральная функция?
Сформулируйте свойства неопределенного интеграла, непосредственно вытекающие из его определения.
В чем разница между выражениями: и ?
Рассмотрите таблицу основных интегралов. Покажите, как каждая из ее формул получается из соответствующей формулы для производной.
Докажите, что , где - постоянная, не равная нулю.
Чему равен неопределенный интеграл от суммы дифференциалов?
Чему равен интеграл , если известно, что ?
ЛАБОРАТОРНАЯ РАБОТА №2
Методы интегрирования (Замена переменной. Интегрирование по частям)
Замена переменной
Пусть функции и определены соответственно на промежутках
и ; функция непрерывна на промежутке и дифференцируема в его внутренних точках. Тогда, если функция имеет первообразную на и, следовательно, то функция имеет на первообразную и поэтому
Замечание: то есть, полагаем ;
Пример 1: Вычислить . Делаем замену .
Тогда .
Пример 2: Вычислить Делаем замену ,
Тогда