Лабораторная работа: Методы интегрирования
(4)
Так как производная содержит все простые множители, на которые разлагается, то является наибольшим общим делителем и , так что может быть определено по этим многочленам (последовательным делением). Тогда определяется простым делением на . Обратимся к определению числителей и в формуле (4).
Для этого используем метод неопределенных коэффициентов.
Перепишем (4) в виде:
(5)
Покажем теперь, что первую дробь всегда можно привести к знаменателю , сохранив целым числитель. Именно,
, (6)
где означает частное . Освобождаясь от общего знаменателя , придем к тождеству двух многочленов (сравни (5) и (6)).
Пример.
Имеем
.
Откуда
Приравнивая коэффициенты при одинаковых степенях в обеих частях , получим:
Таким образом,
=-
Варианты
Вычислить интегралы:
В-1
Вопрос к лабораторной работе №4
1. В чем заключается метод Остроградского и когда им пользуются?
ЛАБОРАТОРНАЯ РАБОТА №5
Интегрирование тригонометрических функций
Дифференциалы вида
, (I)
где - рациональная функция от двух переменных, могут быть приведены к более простому виду с помощью подстановки
.(*)
При этом используется формулы из тригонометрии:
; ;
Тогда: