Реферат: Интеграл Лебега

причем из существования интеграла в правой части следует су­ществование интеграла в левой части. (Проверяется непосред­ственно.)

В) Ограниченная на множестве А простая функция f инте­грируема на А, причем, если ½f( x) ½£ M на A , то

½½£M m (A).

(Проверяется непосредственно.)

2. Определение интеграла Лебега

Классическое определение интеграла, данное О. Коши и разви­тое Б. Риманом, состоит, как известно, в следующем: рассматри­вается конечная функция f( x), заданная на сегменте [ a, b] ; этот сегмент разбивается на части точками

x0 = a < x1 < x2 < ¼ < xn = b

в каждой части [ xk , xk +1 ] выбирается точка x k и составляется риманова сумма

s = .

Если сумма s при стремлении к нулю числа

l = max(xk+1 – xk ).

стремится к конечному пределу I , не зависящему ни от способа дробления [ a, b] , ни от выбора точек x k , то этот предел I назы­вается интегралом Римана функции f( x) и обозначается символом

.

Иногда, желая подчеркнуть, что речь идет именно о римановом интеграле, пишут

( R).

Функции, для которых интеграл Римана существует, называются интегрируемыми в смысле Римана или, короче, интегрируемыми ( R). Для интегрируемости (R) функции f( x) необходимо, чтобы она была ограниченной.

Еще Коши установил, что всякая непрерывная функция интегри­руема (R). Существуют также и разрывные функции, интегрируе­мые (R). В частности, такова любая разрывная монотонная функция.

Легко построить, однако, ограниченную функцию, которая не будет интегрируемой (R). Рассмотрим, например, функцию Ди­рихле , которая определяется на сегменте [0, 1] следующим образом

1, если x рационально,

y( x) =

0, если x иррационально.

Легко видеть, что эта функция не интегрируема (R), ибо сумма s обращается в 0, если все точки x иррациональны и s = 1, если все рациональны.

Таким образом, риманово определение интеграла страдает суще­ственными недостатками - даже очень простые функции оказываются неинтегрируемыми.

Нетрудно разобраться в причинах этого обстоятельства.

Дело заключается в следующем: при составлении сумм Римана s , мы дробим сегмент [ a, b] на мелкие части [ x0 , x1 ], [ x1 , x2 ], ¼ ,[ xn -1 , xn ] (назовем их через e0 , e1 , ¼ , en -1 ), в каждой части ek берем точку x k и, составив сумму

s = ,

требуем, чтобы она имела предел, не зависящий от выбора точек x k в множествах е k . Иначе говоря, каждая точка х из множества е k может быть взята за x k , а варьирование этой точки не должно заметно влиять на значение суммы s . А это возможно лишь в том случае, когда варьирование точки x k мало изменяет величину f( x k ) . Но что же объединяет между собой различные точки х множества ek ? Их объединяет то, что они близки друг другу, ибо е k есть малый сегмент [ xk , xk +1 ].

Если функция f( x) непрерывна, то достаточная близость абсцисс х влечет за собой и близость соответствующих значений функции и мы вправе ждать, что изменение точки x k в пределах множества ek мало влияет на величину суммы s , но для функция разрывной это вовсе не так.

Иначе можно сказать, что множества ek составлены так, что только для непрерывных функций значение f( x k ) можно считать нор­мальным представителем других значений функции на ek .

К-во Просмотров: 982
Бесплатно скачать Реферат: Интеграл Лебега