Реферат: Классические методы безусловной оптимизации
Ответ на этот вопрос можно получить, изучив достаточные условия. Эти условия предполагают исследование матрицы вторых производных целевой функции .
2. Достаточные условия для точки локального минимума (максимума)
Представим разложение функции в окрестности точки
в ряд Тейлора с точностью до квадратичных по
слагаемых.
(1)
Разложение (1) можно представить более кратко, используя понятие: "скалярное произведение векторов" и "векторно-матричное произведение".
(1')
- матрица двух производных от целевой функции по соответствующим переменным.
,
Приращение функции на основании (1') можно записать в виде:
(3)
Учитывая необходимые условия:
,
(4)
Подставим (3) в виде:
(4')
(5)
Квадратичная форма называется дифференциальной квадратичной формой (ДКФ).
Если ДКФ положительно определена, то и стационарная точка
является точкой локального минимума.
Если же ДКФ и матрица , ее представляющая, отрицательно определены, то
и стационарная точка
является точкой локального максимума.
Итак, необходимое и достаточное условие для точки локального минимума имеют вид
(эти же необходимые условия можно записать так:
,
,
)
- достаточное условие.
Соответственно, необходимое и достаточное условие локального максимума имеет вид:
,
(
),
.
Вспомним критерий, позволяющий определить: является ли квадратичная форма и матрица, ее представляющая, положительно определенной, или отрицательно определенной.