Реферат: Классические методы безусловной оптимизации

Перепишем (8) в виде

, (8')

Система (8') представляет собой систему из линейных уравнений относительно известных: . Система разрешима, если (вот почему, как и в методе исключения в рассматриваемом случае должно выполняться условие ). (9)

Поскольку в ключевом выражении (7) первая сумма равна нулю, то легко понять, что и вторая сумма будет равняться нулю, т.е. имеет место следующая система уравнений:

(10)

Система уравнений (8) состоит из уравнений, а система уравнений (10) состоит из уравнений; всего уравнений в двух системах, а неизвестных

: ,

Недостающие уравнений дает система уравнений ограничений (2):

,

Итак, имеется система из уравнений для нахождения неизвестных:

(11)

Полученный результат – система уравнений (11) составляет основное содержание ММЛ.

Легко понять, что систему уравнений (11) можно получить очень просто, вводя в рассмотрение специально сконструированную функцию Лагранжа (3).

Действительно

, (12)

, (13)

Итак, система уравнений (11) представима в виде (используя (12), (13)):

(14)

Система уравнений (14) представляет необходимое условие в классической задаче условной оптимизации.

Найденное в результате решение этой системы значение вектора называется условно-стационарной точкой.

Для того, чтобы выяснить характер условно-стационарной точки необходимо воспользоваться достаточными условиями.

5.3 Достаточные условия в классической задаче условной оптимизации. Алгоритм ММЛ

Эти условия позволяют выяснить, является ли условно-стационарная точка точкой локального условного минимума, или точкой локального условного максимума.

Относительно просто, подобно тому, как были получены достаточные условия в задаче на безусловный экстремум. Можно получить достаточные условия и в задаче классической условной оптимизации.

Результат этого исследования:

где - точка локального условного минимума.

где - точка локального условного максимума, - матрица Гессе с элементами

К-во Просмотров: 414
Бесплатно скачать Реферат: Классические методы безусловной оптимизации