Реферат: Классические методы безусловной оптимизации
;
потому что об этом "говорят" необходимые условия
.
Вышесказанное позволяет сформулировать алгоритм ГФА метода решения классической задачи условной оптимизации:
1) строим семейство линий уровня целевой функции:
; ;
2) строим ОДР, используя уравнение ограничения
3) с целью внесения исправления возрастания функции , находим и выясняем характер экстремальных точек;
4) исследуем взаимодействие линий уровня и функции , находя при этом из системы уравнений координаты условно стационарных точек – локальных условных минимумов и локальных условных максимумов.
5) вычисляем
Следует особо отметить, что основные этапы ГФА метода решения классической задачи условной оптимизации совпадают с основными этапами ГФА метода решения задач НП и ЛП, отличие лишь в ОДР , а также в нахождении местоположения экстремальных точек в ОДР (например, в задачах ЛП эти точки обязательно находятся в вершинах выпуклого многоугольника, представляющего ОДР ).
5.5. О практическом смысле ММЛ
Представим классическую задачу условной оптимизации в виде:
(1)
(2)
где - переменные величины, представляющие в прикладных технических и экономических задачах переменные ресурсы.
В пространстве задача (1), (2) принимает вид:
(1')
где - переменная величина. (2')
Пусть - точка условного экстремума:
При изменении изменяется
, т.е.
Соответственно изменится и значение целевой функции: