Реферат: Классические методы безусловной оптимизации
Матрица Гессе имеет размерность .
Размерность матрицы Гессе можно уменьшить, используя условие неравенства нулю якобиана: . При этом условии можно зависимые переменные выразить через независимые переменные , тогда матрица Гессе будет иметь размерность , т.е. необходимо говорить о матрице с элементами
,
тогда достаточные условия будут иметь вид:
, - точка локального условного минимума.
, - точка локального условного максимума.
Доказательство: Алгоритм ММЛ:
1) составляем функцию Лагранжа: ;
2) используя необходимые условия, формируем систему уравнений:
3) из решения этой системы находим точку ;
4) используя достаточные условия, определяем, является ли точка точкой локального условного минимума или максимума, затем находим
1.5.4. Графо-аналитический метод решения классической задачи условной оптимизации в пространстве и его модификации при решении простейших задач ИП и АП
Этот метод использует геометрическую интерпретацию классической задачи условной оптимизации и основан на ряде важных фактов, присущих этой задаче.
; ; ;
В - общая касательная для функции и функции , представляющей ОДР .
Как видно из рисунка точка - точка безусловного минимума, точка точка условного локального минимума, точка - точка условного локального максимума.
Докажем, что в точках условных локальных экстремумов кривая и соответствующие линии уровня
; .
Из курса МА известно, что в точке касания выполняется условие
где - угловой коэффициент касательной, проведенной соответствующей линией уровня; - угловой коэффициент касательной, проведенной к функции
Известно выражение (МА) для этих коэффициентов:
;