Реферат: Лекции по Математике 3

ти элементарных действий над известными функциями и интегрирования этих функций.

Таких уравнений сравнительно немного, рассмотрим некоторые виды дифференциальных урав-

нений, интегрируемых в квадратурах.

I. Уравнения с разделенными и разделяющимися переменными; уравнения, приводящиеся

к уравнениям с разделяющимися переменными.

Уравнение вида

(7)

называется дифференциальным уравнением с разделенными переменными.

- известные непрерывные функции.

(8)

Это общий интеграл данного дифференциального уравнения (7).

Уравнение вида

(9)

в котором коэффициенты при дифференциалах являются произведениями функций, завися-

щих только от какой-то одной переменной, называется уравнением с разделяющимися пере-

менными.

Разделим левую и правую части уравнения (9) на произведение , получим урав-

нение с разделенными переменными:

, тогда общий интеграл уравнения (9) имеет в

(10)

Деление на может привести к потере решений, которые обращают в ноль данное

произведение, поэтому надо делать проверку.

Пример 5. Найти общее решение уравнения .

Решение. , делим левую и правую части на , получаем

или , тогда

, пропотенцируем данное равенство, получим

- это общий интеграл исходного уравнения.

Уравнение вида

(11),

где - известная непрерывная функция; - константы, называется приводящимся к

уравнению с разделяющимися переменными.

Чтобы привести данное уравнение к уравнению с разделяющимися переменными, надо сделать

следующую замену:

(12),

тогда , а , подставляем в уравнение (11), получаем

К-во Просмотров: 477
Бесплатно скачать Реферат: Лекции по Математике 3