Реферат: Лекции по Математике 3

затем возвращаемся к переменной .

Замечание. Если , то уравнение (23) имеет еще решение .

Пример 13. Найти общее решение уравнения .

Решение. Разделим левую и правую части уравнения на , получаем: .

Сделаем замену , тогда или , подставляем в уравнение, полу-

чаем: . Это линейное неоднородное уравнение. Сначала решаем линейное

уравнение, соответствующее данному неоднородному, то есть , оно является

уравнением с разделяющимися переменными, поэтому разделяем переменные и интегрируем:

. Потенцируем полученное равенство:

. Будем искать общее решение линейного неоднородного уравнения в виде: , тогда . Подставляем в неоднородное уравнение, получаем:

. Теперь разделяем переменные и интегрируем:

, тогда

. Возвращаемся к переменной , следовательно, общее ре-

шение исходного уравнения и еще одно решение, не входящее в этот на-

бор .

IV. Уравнения в полных дифференциалах.

Определение 18. Уравнение (27)

называется уравнением в полных дифференциалах, если его левая часть является полным диф-

ференциалом некоторой функции двух независимых переменных.

Дифференциал функции двух переменных , тогда - это общий

интеграл уравнения (27).

Теорема 3. Пусть функции имеют непрерывные частные производные в неко-

торой области плоскости . Для того, чтобы уравнение (27) было уравнением в полных

дифференциалах, необходимо и достаточно, чтобы выполнялось равенство

(28)

Доказательство. 1. Необходимость: пусть левая часть уравнения (27) является полным диффе-

ренциалом некоторой функции двух переменных , тогда

, следовательно, .

Первое равенство продифференцируем по , второе – по , получаем

. Так как частные производные непрерывны (по условию), то

К-во Просмотров: 478
Бесплатно скачать Реферат: Лекции по Математике 3