Реферат: Лекции по Математике 3

переменными, разделим переменные: или , тогда его общий интеграл имеет вид: или .

Затем заменяем на и получаем общий интеграл для уравнения (11).

Пример 6. Найти общее решение уравнения .

Решение. Сделаем замену , тогда или , подставляем в исходное

уравнение, получаем или , , разделяем переменные:

, тогда , следовательно,

, возвращаемся к переменной :

или - это общее решение исходного уравнения.

Лекция 2.

II. Однородные дифференциальные уравнения и приводящиеся к ним.

Определение 13. Функция называется однородной функцией -ой степени однород-

ности, если при любых допустимых значениях справедливо равенство

(13)

Пример 7. Рассмотрим функцию . Данная функция является однородной

степени однородности 2, так как

.

Пример 8. Функция однородная степени однородности 0, так как

.

Определение 14. Уравнение (14)

называется однородным, если функции являются однородными одинаковой

степени однородности.

Однородное уравнение еще может записываться следующим образом

(15)

Решаются однородные дифференциальные уравнения с помощью замены:

, тогда , (для уравнения (14)), ( для уравнения

(15)). После замены уравнение станет уравнением с разделяющимися переменными и .

Пример 9. Найти общий интеграл уравнения .

Решение. Уравнение можно записать следующим образом . Сделаем соответствую-щую замену и подставим в уравнение, получим:

или , разделяем переменные, тогда ; интегрируем

, получаем или .

Теперь вернемся к прежней переменной или - это общий

К-во Просмотров: 474
Бесплатно скачать Реферат: Лекции по Математике 3