Реферат: Методика моделирования тепловизионных изображений
Методика моделирования
тепловизионных изображений.
В теории и практике проектирования тепловизионных оптико-электронных систем немаловажную роль играет моделирование тепловизионных изображений. Яркость тепловизионных изображений зависит как от распределения температуры по поверхности наблюдаемого объекта, так и от коэффициента излучения и ориентации визируемых элементов его поверхности - его формы. Кроме того, качество тепловизионного изображения зависит от передаточных характеристик оптической системы и всех звеньев тепловизора.
В основу теории моделирования тепловизионных изображений заложен процесс формирования видеосигналов, пропорционально потоку теплового излучения объекта для всего тепловизионного кадра, в котором содержится L строк и N элементов в строке. Величина видеосигнала U( N, L ) элемента разложения кадра описывается выражением:
l2
U ( N, L ) = ( 1/ p)×e (y)×w ×cosy(N,L)×dS(N,L)×òSl ×W(l,T,y,z)×t0 (l)×ta (l)×dl ( 1 );
l1
где w - передний апертурный угол оптической системы тепловизора;
y - угол между нормалью к элементу dS( N,L ) поверхности объекта и направлением наблюдения;
W(l,T,y,z) - спектральная светимость элемента dS(N,L) поверхности объекта, имеющего абсолютную температуру T;
e(y) - индикатриса спектрального коэффициента излучения поверхности объекта;
Sl - абсолютная спектральная чувствительность приёмника излучения тепловизора;
l1 ,l2 - границы спектральной чувствительности приемника излучения;
t0 (l),ta (l) - спектральный коэффициент пропускания оптической системы и слоя атмосферы;
y,z - координаты элемента dS(N,L) поверхности объекта в пространстве предметов [ 2 ] .
Для анализа влияния на качество изображения передаточных характеристик оптической системы тепловизора, приёмника излучения, электронного блока обработки информации и видеоконтрольного устройства (ВКУ) используется распределение освещённости E(y’, z’), которое определяется по формуле:
00 j ×2×p×(n× y’+ m× z’ )
E(y’, z’)= t0 ×w’×òòL(n, m)×h0 (n,m)×hп (n,m)×hэ (n,m)×hв (n,m)×e dn×dm. (2 )
-00
где w’ - задний апертурный угол оптической системы тепловизора с интегральным коэффициентом пропускания t;
h0 (n,m),hп (n,m),hэ (n,m),hв (n,m) - модуль передаточной характеристики соответственно оптической системы, приёмника излучения, электронного блока обработки информации и ВКУ тепловизора;
y’, z’ - координаты элемента dS поверхности объекта в пространстве изображений;
L(n,m) - пространственно-частотный спектр яркости поверхности объекта;
(n,m)- пространственные частоты, приведённые к плоскости изображений.
Тепловизионные методы в настоящее время широко используются в задачах распознавания и идентификации объектов. Но следует отметить, что пользуясь только обычными тепловизионными изображениями, величина видеосигналов в которых определяется выражением ( 1 ), распознать объекты внутри их контура практически невозможно. В чём причина потери информации о форме объекта внутри контура в обычных тепловизионных изображениях? Чтобы это выяснить рассмотрим рис.1. Согласно этому рисунку, справедливо равенство:
dS1 ×cosy1 = dS 2 ×cosy2 = dS3 ×cosy3 ( 3 )
Анализируя рис.1 и эту связь, можно сделать вывод, что именно здесь и происходит потеря информации о форме объекта внутри контура. Сопряжённость всех элементов dS’ и dS, соответственно, приводит к тому, что площадки, расположенные под меньшими углами(yÞ0, cosyÞ1), должны иметь меньшие размеры dS, чтобы равняться тем площадкам, которые расположены под большими углами(yÞ900 , cosyÞ0).
В связи с этим становится ясной необходимость использования таких информационных оптических характеристик теплового излучения объектов, которые исключали бы пропорциональную связь параметров dS и cosy. К таким величинам относятся поляризационные свойства теплового излучения поверхности объектов. По этой причине и представляют интерес задачи моделирования и обработки поляризационных тепловизионных изображений.
2.Теория и методы моделирования поляризационных
--> ЧИТАТЬ ПОЛНОСТЬЮ <--