Реферат: Методика моделирования тепловизионных изображений

2.1.Теория моделирования поляризационных тепловизионных

изображений на основе вектор-параметра Стокса теплового

излучения.

Для подробного описания теории моделирования поляризационных тепловизионных изображений рассмотрим объект произвольной формы, который в декартовой системе координат описывается уравнением:

f(x,y,z) = 0.

Допустим, что этот объект ( рис.2 ) наблюдается из точки Н, где расположен чувствительный элемент тепловизионной системы. Выбираем на поверхности этого объекта элемент dS, который соответствует одному элементу разложения кадра. Наклон площадки dS по отношению к элементу приёмника определяется

углом y между нормалью и направлением наблюдения rн . Тогда векторы n и r н определяют плоскость наблюдения. Коэффициент излучения рассматриваемого объекта имеет две составляющие: параллельную eïï , которая лежит в плоскости наблюдения ( n*rн ), и перпендикулярную eûë , которая перпендикулярна плоскости наблюдения. Положение элемента dS определяется в декартовой системе координат радиус-вектором R , а в сферической системе координат углами q и j.

Один из методов анализа поляризации пучка света - это метод вектор-параметра Стокса [ 3 ], характеризующий все виды и формы поляризации излучения поверхности объекта, который для нашего случая собственного излучения элементов dS(N, L) имеет вид:

é U0 ( N, L) + U90 ( N, L) ù

Ui ( N, L ) = ê U0 ( N, L) - U90 ( N, L) ê , ( 4 )

ê U45 ( N, L) - U135 ( N, L) ç

ë 0 û

где i = 1, 2, 3, 4;

U0 , U45 , U90 , U135 - величины сигналов, поляризованные, соответственно, под углами 00 , 450 , 900 , 1350 относительно плоскости референции ( плоскости отсчёта ).

Степень поляризации теплового изображения зависит от величины видеосигналов поляризационных составляющих тепловизионных изображений элементов поверхности объекта с азимута поляризации соответственно равны 00 , 450 , 900 , 1350 . Величины видеосигналов U0 , U90 в соответствии с тем, что коэффициент излучения e(y) можно представить в виде параллельной e÷÷ и перпендикулярной eûë составляющих, запишем в виде:

U0 (N, L) = A (N, L) ×[e÷÷ (y) × (n * j )2 + eûë (y) × (eûë × j )2 ], ( 5 )

U90 (N, L) = A (N, L) ×[e÷÷ (y) × (n * k )2 + eûë (y) × (eûë × k )2 ]. ( 6 )

где l2

A ( N, L ) = ( 1/ p)×e (y)×w ×cosy(N,L)×dS(N,L)×òSl ×W(l,T,y,z)×t0 (l)×ta (l)×dl.

l1

Тогда, например, зависимость степени поляризации теплового изображения, с азимутом tn =0, от величины видеосигналов двух поляризационных тепловизионных изображений элементов поверхности объекта, с азимутами поляризации 00 , 900 , можно представить в виде:

P’ (N, L) = [ U0 (N, L) - U90 (N, L)] / [U0 (N, L)+U90 (N, L)], ( 7 )

где

P’ (N, L) - степень поляризации изображений с азимутом tn =0.

Если пронумеровать вектор-параметр Стокса, то формула (4) примет вид:

é 1 ù

U1 (N, L) = U(N, L) ô P(N, L) ×cos2×t(N, L) ê ,( 8 )

ô P(N, L) ×sin2×t(N, L) ê

ë 0 û

К-во Просмотров: 762
Бесплатно скачать Реферат: Методика моделирования тепловизионных изображений