Реферат: Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки
Вычтем из уравнения () уравнение , умноженное на - 3:
Из уравнения находим Z=-2; подставив это значение в уравнение , получим Y=0,2-0,4Z=0,2-0,4 (-2) =1; наконец, подставив значение Z=-2 и Y=1 в уравнение (a 1) , находим X=0,5-0,5Y-Z=0,5-0,5 1 - (-2) =2. Итак, получаем ответ X=2, Y=1, Z=-2.
Проверка:
Линейные уравнения.
Уравнения вида ax+b=0, где a и b - некоторые постоянные, называется линейным уравнением.
Если a¹0, то линейное уравнение имеет единственный корень: x = - b /a.
Если a=0; b¹0, то линейное уравнение решений не имеет.
Если a=0; b=0, то, переписав исходное уравнение в виде ax = - b, легко видеть, что любое xявляется решением линейного уравнения.
Уравнение прямой имеет вид: y = ax + b.
Если прямая проходит через точку с координатами X0 и Y0 , то эти координаты удовлетворяют уравнению прямой, т.е. Y0 = aX0 + b.
Пример 1.1 Решить уравнение
2x- 3 + 4 (x- 1) = 5.
Решение. Последовательно раскроем скобки, приведём подобные члены и найдём x: 2x- 3 + 4x- 4 = 5, 2x + 4x = 5 + 4 + 3,6x = 12, x = 2.
Ответ: 2.
Пример 1.2 Решить уравнение 2x - 3 + 2 (x- 1) = 4 (x- 1) - 7.
Решение.2x + 2x- 4x = 3 +2 - 4 - 7, 0x = - 6.
Ответ: Æ.
Пример 1.3 Решить уравнение.
2x + 3 - 6 (x- 1) = 4 (x- 1) + 5.
Решение.
2x- 6x + 3 + 6 = 4 - 4x + 5,- 4x + 9 = 9 - 4x,
4x + 4x = 9 - 9,0x = 0.
Ответ: Любое число.
Системы линейных уравнений.
Уравнение вида
a1 x1 + a2 x2 + … + an xn = b,