Реферат: Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки
Решение симметрических систем уравнений.
Напомним, что многочлен P (x, y) называется симметрическим, если P (x, y) = P (y, x).
При решении систем уравнений вида
P1 (x, y) = 0,
P2 (x, y) = 0,
где P1 (x, y) и P2 (x, y) - симметрические многочлены, полезной оказывается такая замена неизвестных: x + y = U, xy = V. Напомним, что любой симметрический многочлен P (x, y) можно представить как выражение от U и V.
Пример Решить систему уравнений
x2 + xy + y2 = 49,
x + y + xy = 23.
Решение. Заметим, что:
x2 + xy + y2 = x2 + 2xy + y2 -x
y = (x + y) 2 -xy.
Сделаем замену неизвестных: x + y = U, xy =V.
Система примет вид:
U2 -V = 49,
U + V = 23.
Сложив эти уравнения, получим уравнение U2 + U- 72 = 0 с корнями U1 = 8,U2 = -9. Соответственно V1 = 15, V2 = 32. Остаётся решить системы уравнений:
x + y = 8,xy = 15,
x + y = -9,xy = 32.
Система x + y = 8, имеет решения:
x1 = 3, y1 = 5; x2 = 5,
y2 = 3.xy = 15.
Система x + y = - 9, действительных решений не имеет. Ответ: x1 = 3, y1 = 5; x2 = 5, y2 = 3.
Глава 2. Методика исследования данной работы
Методика исследовании.
Моя основная цель, найти более рациональный способ решения систем линейных уравнений с двумя переменными - методом подстановки.
Поэтому я решил использовать метод “Искусство", т.е. решать примеры нестандартно, придумать “свой метод", догадаться что-то прибавить и отнять, выделить полный квадрат, на что-то разделить и умножить и т.д.
При решении систем уравнений второй степени часто используется также способ замены переменных - его я тоже решил применить.
Итак, для решения проблемы я решил использовать два методы решений:
1. метод "Искусство" - "свой метод"