Реферат: Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки

Этапы исследования.

Основными методами решения систем являются метод подстановки и метод введения новых переменных.

Предлагается симметрическая система уравнений; стабильная замена переменных

Решение задач:

Старинная задача.

Три сестры пришли на рынок с цыплятами. Одна принесла для продажи 10 цыплят, другая 16, третья 26. До полудня они продали часть своих цыплят по одной и той же цене. После полудня опасаясь,, что не все цыплята будут проданы, они понизили цену и распродали оставшихся цыплят снова по одинаковой цене. Домой все трое вернулись с одинаковой выручкой: каждая сестра получила от продаж 35 рублей.

По какой цене продали они цыплят до и после полудня?

Решение

Обозначим число цыплят проданных каждой сестрой до полудня, через х, у, z. Во вторую половину дня они продали 10 - х, 16 - у, 26 - z. Цену до полудня обозначим через m, после полудня - через n. Для ясности сопоставим эти обозначения.

Число проданных цыплят цена

До полудня

После полудня

Х

10 - х

У

16 - у

Z

26 - z

m

n

Первая сестра выручила: m х + n (10 - х) следовательно, m х + n (10 - х) = 35, вторая: m у + n (16 - у) следовательно, m у + n (16 - у) =35, третья: mz+ n (26 - z) следовательно, mz+ n (26 - z) =35

Преобразуем эти три уравнения:

m х + n (10 - х) = 35 (m- n) х +10 n =35

m у + n (16 - у) =35 ( m- n) у +16 n =35

mz+ n (26 - z) =35 (m- n) z+26 n =35

Вычтя из третьего уравнения первое, затем второе, получим:

К-во Просмотров: 534
Бесплатно скачать Реферат: Поиски более рационального способа решения систем линейных уравнений с двумя переменными - методом подстановки