Реферат: Поле комплексных чисел

Следовательно - корень степени из 1, т.е. совпадает с одним из чисел . Имеем

Из вышедоказанного следует, что числа попарно различны.

п.10. Мультисекция.

Теорема 1. (о мультисекции многочлена) Пусть

- многочлен с числовыми коэффициентами, . Тогда

, (1)

где .

Доказательство. Для равенство (1) очевидно выполнено. Докажем (1) для . Имеем

(2)

Если - целое, то и .

Если - не целое, то и по формуле суммы членов геометрической прогрессии

.

Поэтому в (2) суммирование нужно вести только по тем , для которых . Отсюда следует (1).

Заметим, что равенство (1) справедливо не только для многочленов, но и для рядов.

Следствие 1. Пусть . Тогда

. (3)

Доказательство. Рассмотрим многочлен

.

Применяя мультисекцию к многочлену , получим, что

,

где . Полагая в последнем равенстве получим, что

. (4)

Имеем

.

Приравнивая действительные части обеих частей равенства (4), получаем равенство (3).

К-во Просмотров: 486
Бесплатно скачать Реферат: Поле комплексных чисел