Реферат: Поле комплексных чисел

.

Имеем

(2) ,

так как

.

Из (2) следует, что

.

Из последнего неравенства следует неравенство (1).

Докажем теперь неравенство треугольника. Неравенство треугольника, очевидно, выполнено для . Докажем неравенство треугольника для . Имеем

.

7) .

Доказательство. . Отсюда следует нужное неравенство.

8) .

Доказательство. Справедливы неравенства

, .

Одно из подчёркнутых чисел совпадает с .

п.5. Геометрическая интерпретация комплексных чисел.

Пусть записано в алгебраической форме . Поставим в соответствие числу точку плоскости с координатами . Это соответствие является биекцией множества комплексных чисел на множество точек плоскости. Проиллюстрируем это соответствие Рис.1. В дальнейшем мы будем считать, что точками плоскости являются комплексные числа и будем называть эту плоскость комплексной плоскостью.

Числа и расположены симметрично относительно оси абсцисс. Действительные числа расположены на оси абсцисс, поэтому ось абсцисс - ось действительных чисел. На оси ординат расположены числа, у которых действительная часть равна нулю. Иногда ось ординат называют осью мнимых чисел.

Геометрический смысл модуля

Из Рис.1 видно, что расстояние от начала координат до числа равно . Поэтому геометрический смысл - расстояние от до начала координат.

y

bi a

i

-1+i 1+i

- 1 0 1 a

x

- 1-i 1-i

- i

К-во Просмотров: 483
Бесплатно скачать Реферат: Поле комплексных чисел