Реферат: Рациональные уравнения и неравенства
Содержание
I. Рациональные уравнения.
1) Линейные уравнения.
2) Системы линейных уравнений.
3) Квадратные уравнения и уравнения, сводящиеся к ним.
4) Возвратные уравнения.
5) Формула Виета для многочленов высших степеней.
6) Системы уравнений второй степени.
7) Метод введения новых неизвестных при решении уравнений и систем уравнений.
8) Однородные уравнения.
9) Решение симметрических систем уравнений.
10) Уравнения и системы уравнений с параметрами.
11) Графический метод решения систем нелинейных уравнений.
12) Уравнения, содержащие знак модуля.
13) Основные методы решения рациональных уравнений
II. Рациональные неравенства.
1) Свойства равносильных неравенств.
2) Алгебраические неравенства.
3) Метод интервалов.
4) Дробно-рациональные неравенства.
5) Неравенства, содержащие неизвестное под знаком абсолютной величины.
6) Неравенства с параметрами.
7) Системы рациональных неравенств.
8) Графическое решение неравенств.
III. Проверочный тест.
Рациональные уравнения
Функция вида
P(x) = a0 xn + a1 xn – 1 + a2 xn – 2 + … + an – 1 x + an ,
где n — натуральное, a0 , a1 ,…, an — некоторые действительные числа, называется целой рациональной функцией.
Уравнение вида P(x) = 0, где P(x) — целая рациональная функция, называется целым рациональным уравнением.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--