Реферат: Рациональные уравнения и неравенства

Из первого уравнения выражаем:x= (8 – 3y) / 2. Подставляем это выражение во второе уравнение и получаем систему уравнений


x = (8 – 3y) / 2,

3(8 – 3y) / 2 + 2y = 7.

Из второго уравнения получаем y = 2. С учётом этого из первого уравнения x = 1.

Ответ: (1; 2).

Пример 2.5. Решить систему уравнений


x + y = 3,

2x + 2y = 7.

Решение. Система не имеет решений, так как два уравнения системы не могут удовлетворяться одновременно (из первого уравнения x + y = 3, а из второго x + y = 3,5).

Ответ: Решений нет.

Пример 2.6. решить систему уравнений


x + y = 5,

2x + 2y = 10.

Решение. Система имеет бесконечно много решений, так как второе уравнение получается из первого путём умножения на 2 (т.е. фактически есть всего одно уравнение с двумя неизвестными).

Ответ: Бесконечно много решений.

Пример 2.7. решить систему уравнений

x + y – z = 2,

2x – y + 4z = 1,

– x + 6y + z = 5.

Решение. При решении систем линейных уравнений удобно пользоваться методом Гаусса, который состоит в преобразовании системы к треугольному виду.

Умножаем первое уравнение системы на – 2 и, складывая полученный результат со вторым уравнением, получаем – 3y + 6z = – 3. Это уравнение можно переписать в виде y – 2z = 1. Складывая первое уравнение с третьим, получаем 7y = 7, или y = 1.

Таким образом, система приобрела треугольный вид


x + y – z = 2,

y – 2z = 1,

y = 1.

Подставляя y = 1 во второе уравнение, находим z = 0. Подставляя y =1 и z = 0 в первое уравнение, находим x = 1.

Ответ: (1; 1; 0).

Пример 2.8. при каких значениях параметра a система уравнений

2x + ay = a + 2,

(a + 1)x + 2ay = 2a + 4

имеет бесконечно много решений?

Решение. Из первого уравнения выражаем x:

x = – (a / 2)y + a / 2 +1.

Подставляя это выражение во второе уравнение, получаем

(a + 1)( – (a / 2)y + a / 2 +1) + 2ay = 2a + 4.

Далее умножим обе части уравнения на 2 и упростим его:

(a + 1)(a + 2 – ay) + 4ay = 4a + 8,

4ay – a(a + 1)y = 4(a + 2) – (a + 1)(a + 2),

ya(4 – a – 1 ) = (a + 2)(4 – a – 1),

ya(3 – a) = (a + 2)(3 – a).

Анализируя последнее уравнение, отметим, что при a = 3 оно имеет вид 0y = 0, т.е. оно удовлетворяется при любых значениях y.

Ответ: 3.

Квадратные уравнения и уравнения, сводящиеся к ним.

Уравнение вида ax2 + bx + c = 0, где a, b и c — некоторые числа (a¹0);

x — переменная, называется квадратным уравнением.

Формула решения квадратного уравнения.

Сначала разделим обе части уравнения ax2 + bx + c = 0 на a — от этого его корни не изменятся. Для решения получившегося уравнения

x2 + (b / a)x + (c / a) = 0

К-во Просмотров: 2107
Бесплатно скачать Реферат: Рациональные уравнения и неравенства