Реферат: Рациональные уравнения и неравенства
x ¹ 0
или
2x2 + 11x + 2 = 0,
x ¹ 0;
X1 = 2; X2 = 1 / 2 или X3 = ( - 11 + Ö105) / 4; X4 = ( -11 - Ö105) / 4
(все найденные корни уравнения входят в область допустимых значений).
Ответ: 2; 0,5; ( - 11 + Ö105) / 4; (-11 - Ö105) / 4.
Пример 3.18. Решить уравнение x3 – x2 – 9x – 6 = 0.
Решение. Угадаем хотя бы один корень данного уравнения. “Кандидатами” в целочисленные корни (а только их есть надежда отгадать) являются числа
±1, ±2, ±3, ±6.
Подстановкой в исходное уравнение убеждаемся, что X = -2 является его корнем.
???????? ????????? x3 ? x2 ? 9x ? 6 ?? ??????? x + 2
x3 – x2 – 9x – 6 = (x + 2)(x2 – 3x – 3) = 0.
Решив теперь уравнение x2 – 3x – 3 = 0,
получаем X2 = (3 - Ö21) / 2, X3 = (3 + Ö21) / 2.
Ответ: xÎ {-2; (3 - Ö21) / 2; (3 + Ö21) / 2}.
Пример 3.19.
x3 – x2 – 8x + 6 = 0.
Решение. Здесь an = 1, a0 = 6. Поэтому, если данное уравнение имеет рациональные корни, то их следует искать среди делителей числа 6: ±1, ±2, ±3, ±6. Проверкой убеждаемся, что x = 3, т.к. 27 – 9 – 24 + 6 = 0.
Делим (x3 – x2 – 8x + 6) на (x – 3)
Получаем: x3 – x2 – 8x + 6 = (x – 3)(x2 + 2x – 2), т.е. данное уравнение можно представить в виде (x – 3)(x2 + 2x – 2) = 0. Отсюда находим, что x1 = 3 — решение, найденное подбором, x2,3 = – 1 ±Ö3 — из уравнения x2 + 2x – 2 = 0.
Ответ: x1 = 3; x2,3 = – 1 ±Ö3.
Пример 3.20.
4x4 + 8x3 + x2 – 3x – 1 = 0.
Решение. Здесь an = 4, a0 = –1. Поэтому рациональные корни уравнения следует искать среди чисел: ± 1; ± 0,5; ± 0,25 (делители 4 есть ±1; ±2; ±4, делители (– 1) есть ± 1). Если x = +1, то 4 + 8 + 1 – 3 – 1 ¹ 0; если x = – 0,5, то
4 / 16 – 8 / 8 + 1 / 4 + 3 / 2 – 1 = 0, т.е. x = – 0,5 корень уравнения. Делим
(4x4 + 8x3 + x2 – 3x – 1) на (x + 0,5):
Данное уравнение можно представить в виде:(x + 0,5)(4x3 + 6x2 – 2x – 2) = 0.
Отсюда x1 = – 0,5 (решение, найденное подбором) и 4x3 + 6x2 – 2x – 2 = 0, т.е. 2x3 + 3x2 – x – 1 = 0. Аналогично находим корень этого уравнения:x = – 0,5. Снова делим.
Имеем: (x + 0,5)(2x2 + 2x – 2) = 0. Отсюда x2 = – 0,5 и x3,4 = (– 1 ±Ö5) / 2.