Реферат: Теорема Безу
Данный многочлен делится на x – 1 без остатка ,
если по теореме Безу
R1 = P4 (1) = 1 + a – 9 + 11 + b = a + b + 3 = 0.
Найдём частное от деления этого многочлена на x – 1 :
_ x4 + ax3 –9x2 + 11x–a –3 x – 1
x4 – x3 x3 +(a+1)x2 +(a–8)x+(a+3)
_(a + 1)x3 – 9x2
(a + 1)x3 – (a + 1)x2
_(a – 8)x2 + 11x
(a – 8)x2 – (a –8)x
_(a + 3)x – a – 3
(a + 3)x – a – 3
0
Частное
x3 +(a+1)x2 +(a–8)x+(a+3)
делится на ( x – 1) без остатка , откуда
R2 = P3 (1) = 1 + (a + 1)*1 +(a – 8)*1 + a+3 =
=3a – 3 = 0 .
a + b + 3 = 0
3a – 3 = 0
a + b =-3
a = 1
Из системы : a = 1 , b = -4
Ответ: a = 1 , b = -4 .
Пример 6.
Разложить на множители многочлен P ( x ) = x 4 + 4 x 2 – 5 .
Среди делителей свободного члена число 1 является корнем данного многочлена P ( x ) , а это значит , что по следствию 2 из теоремы Безу P ( x ) делится на ( x – 1) без остатка :
_ x 4 + 4 x 2 – 5 x – 1