Реферат: Теория случайных чисел

Кумулятивная кривая строится по точкам (xi ,F* (xi )).

Гистограмма – на оси абсцисс – отрезки интервалов t, на этих интервалах строятся прямоугольники с высотой, равной относительной частоте признака. По гистограмме легко строится полигон.

И полигон, и гистограмма характеризуют функцию f* (x) – плотность вероятности.

НСВ – проблема выбора интервала варьирования h.

h выбирается, исходя из необходимости выявления характерных черт рассматриваемого распределения.

Правило Старджесса :

Как только характерные особенности распределения проявились, ставится вопрос об условиях, при которых сформировалось данное распределение – вопрос об однородности статистических данных.

Если функция f* (x) – бимодальная (имеет два максимума), то статистическое данные неоднородные.

Методы математической статистики должны позволить сделать обоснованные выводы о числовых параметрах и законе распределения генеральной совокупности по ограниченному числу выборок из этой совокупности.

Состав выборок случаен и выводы могут быть ложными. С увеличением объема выборки вероятность правильных выводов растет. Всякому решению, принимаемому при статистической оценке параметров, ставится в соответствие некоторая вероятность, характеризующая степень достоверности принимаемого решения.

Задачи оценки параметров распределения ставятся следующим образом:

Есть СВ Х, характеризуемая функцией F(X, q).

q – параметр, подлежащий оценке.

Делаем m независимых выборок объемом n элементов xij (i – номер выборки, j – номер элемента в выборке).

1 x11 , x12 , …, x1n X1

2 x21 , x22 , …, x2n X2

mxm 1 , xm 2 , …, xmn Xm

Случайные величины X1 , X2 ,…Xm мы рассматриваем как m независимых СВ, каждая из которых распределена по закону F(X, q).

К-во Просмотров: 598
Бесплатно скачать Реферат: Теория случайных чисел