Реферат: Теория вероятности
Вероятность совместного появления двух зависимых событий равна произведению вероятности одного из них на условную вероятность другого, исчисленную в предположении, что первое событие уже произошло.
Если , то .
Пример : Вероятность брака при поставке женской одежды составляет 0,015. Определить вероятность того, что проверенные наугад 2 платья из партии в 200 шт., окажутся стандартными.
q=0,015
N=200
Вероятность стандартных платьев ;
Количество стандартных платьев
Вероятность совместного появления нескольких зависимых событий равна произведению вероятности первого из них на условные вероятности остальных, исчисленные в предположении, что это и все предшествующие события уже произошли.
6. Следствие теорем сложения и умножения вероятностей.
Площадь прямоугольника – это пространство элементарных всех событий. Площадь кругов Е1 и Е2 – числа исходов, благоприятствующих событиям Е1 и Е2 .
- число исходов, благоприятствующих совместному появлению событий Е1 и Е2 .
Допустим нас удовлетворяет появление только одного из двух событий Е1 и Е2 . Если эти события не совместны, то их пересечение пустое множество Æ, а вероятность появления Е1 и Е2 несовместимых событий определяется по формуле:
.
Однако, при совместных событиях нас не удовлетворяет ситуация, когда оба события появляются одновременно. Вероятность такого исхода определяется по теореме умножения вероятностей.
Таким образом, вероятность появления событий Е1 и Е2 в общем случае можно рассчитать по формуле:
- для независимых событий.
Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления.
- для зависимых событий.
Пример : Два продавца независимо друг от друга обслуживают покупателей. Вероятность того, что первый продавец сумеет продать товар 0,3, а второй – 0,2. Какова вероятность того, что хотя бы один из продавцов реализует товар?
Данную задачу можно решить и другим способом, рассматривая события, как независимые совокупности. Тогда вероятность, что первый продавец не сумет продать товар – 0,7, а вероятность того, что второй не сумеет продать товар – 0,8.
Пример : Вероятность покупки мужского костюма посетителем магазина составляет 0,02, галстука – 0,1, а вероятность покупки галстука под приобретенный костюм - 0,3.
Надо определить вероятность покупки покупателями хотя бы одной из этих вещей.