Реферат: Управление сложными системами
Раздел 4. Математические модели систем управления
4.1. Основные виды математических моделей
Математические модели могут быть:
1.) Линейными;
2.) Нелинейными
В свою очередь каждая из них может быть:
1.) Непрерывной (система дифференциальных или интегро-дифференциальных уравнений);
2.) Дискретной (система разностных уравнений);
3.) Дискретно-непрерывной (сочетание непрерывной и дискретной систем).
В свою очередь каждая из них может быть:
1.) Стационарной;
2.) Нестационарной.
Математическая модель нестационарна , если хотя бы один из параметров системы изменяется с течением времени.
В свою очередь каждая из них может быть:
1.) С сосредоточенными параметрами;
2.) С сосредоточенными и распределёнными параметрами.
1.) Физические параметры системы (например, масса, скорость, потенциал и др.) обычно сосредоточены в точке (так можно считать), коэффициенты дифференциальных уравнений зависят от этих параметров. В результате, математическая модель будет, например, системой дифференциальных уравнений в полных производных ().
2.) Если система содержит одну из подсистем (например, канал связи, трубопровод), параметры которой распределены в пространстве, то математическая модель такой системы будет содержать, например, систему дифференциальных уравнений в частных производных ().
В свою очередь каждая из них может быть:
1.) Детерминированной;
2.) Стохастической или со случайными параметрами (если хотя бы один из параметров или воздействий является случайной функцией или величиной).
и др.
4.1.1 Математические модели в области вещественной переменной (временной области)
4.1.1.1 Дискретные математические модели
4.1.1.1.1 Решетчатые функции
Решетчатая функция (РФ) — функция, существующая в дискретны равноотстоящие друг от друга значения независимой переменной и равная нулю между этими значениями аргумента.
Пример такой функции:
смотри рисунок б) лекции №3.
— РФ,