Реферат: Управление сложными системами
Объект — динамическая система, дифференциальные уравнения которой могут быть записаны следующим образом:
Х — любая линейная или нелинейная функция.
Составим уравнение регулятора:
Регулятор — также динамическая система, при этом с учётом направленности действия уравнение регулятора не будет содержать х :
Примечание. Направленность действия означает то, что объект не оказывает обратного влияния на регулятор, а только через элемент сравнения и главную обратную связь
Составим уравнение элемента сравнения:
Система уравнений , , — это математическая модель рассматриваемой системы.
В общем случае это система нелинейных дифференциальных уравнений.
4.1.1.2.2 Линеаризация математической модели
Если нелинейности системы несущественны, то ими пренебрегают, и считают модель линейной с какой-то степенью приближения.
Линейные модели используют обычно на этапе предварительного проектирования, они удобны для исследования.
Применяя соответствующий метод линеаризации, можно перейти от линейной модели к линеаризованной.
Рассмотрим один из этих методов:
он опирается на гипотезу малости отклонений “Δ”-вариаций переменных х( t ), y ( t ), r ( t ), f ( t ), от их значений, от их заданных или фиксированных значений “0” х0 ( t ), y 0 ( t ), r 0 ( t ), f 0 ( t ), , например, в установившемся состоянии.
Рассмотрим уравнение объекта :
Полагая и , решения уравнения можно найти в виде , а уравнения в виде , тогда:
Лекция №6. 26.02.2003
Если X непрерывная и однозначная функция, то её можно разложить в ряд Тейлора в окрестности некоторых точек х0 , r 0 , f 0 :
.
Пренебрегая членами ряда порядка выше первого (из-за их малости), с учётом частного случая (в установившемся состоянии после переходного режима при , ) после преобразований в операторной форме это уравнение () можно записать в следующем виде: