Реферат: Вычислительные методы алгебры (лекции)

Утверждение 1. Сумма границ погрешностей приближенных слагаемых является границей погрешности их алгебраической суммы.

Доказательство: .

ЧТД.

Утверждение 2. Среди границ относительной погрешности суммы приближенных слагаемых существует такая, которая не превосходит наибольшей из границ относительной погрешности слагаемых:

.

Утверждение 3. Сумма границ относительных погрешностей сомножителей является границей относительной погрешности их произведения:

.

Следствие 1. При умножении приближенных значений числа на точный множитель к, граница относительной погрешности не меняется, а граница абсолютной погрешности увеличивается в раз.

Следствие 2. Произведение границы относительной погрешности приближенного значения а числа х на является границей относительной погрешности результата возведения числа а в целую положительную степень n:

.

Следствие 3. Частное границы относительной погрешности приближенного значения а числа х и n является границей относительной погрешности корня n-й степени из а:

.

Следствие 4. Сумма границ относительных погрешностей приближенных значений делимого и делителя является границей относительной погрешности частного.


§3. Приближенные вычисления без учета погрешностей.


Правило 1. Для того, чтобы вычислить алгебраическую сумму приближенных слагаемых нужно:

  1. среди слагаемых выбрать наименее точное (имеет наименьшее число разрядов после запятой);

  2. все остальные слагаемые округлить, сохраняя один запасной разряд, следующий за последним разрядом выделенного слагаемого;

  3. сложить полученные после округления числа;

  4. округлить полученный результат до предпоследнего разряда.

Пример. S=2.737+0.77974+27.1+0.2832.74+0.78+27.1+0.2830.9030.9.

Определение 1. Значащими цифрами в десятичной записи числа называется все его цифры кроме нулей, записанных слева от первой цифры не равной 0.

0,00237 – 3 значащие цифры;

0,02000 – 4 значащие цифры.

Правило 2. Для того, чтобы вычислить произведение (деление) приближенных чисел нужно:

  1. выделить сомножитель, содержащий наименьшее число значащих цифр;

  2. округлить остальные сомножители, оставляя на одну значащую цифру больше, чем в выделенном сомножителе;

  3. произвести умножение (деление);

  4. округлить полученный результат, сохраняя столько значащих цифр, сколько их в выделенном сомножителе.

К-во Просмотров: 773
Бесплатно скачать Реферат: Вычислительные методы алгебры (лекции)