Реферат: Вычислительные методы алгебры (лекции)
Правило 3. При возведении приближенного значения в квадрат или куб, при извлечении квадратного или кубического корня, в результате следует оставлять столько значащих цифр, сколько их имеет основание.
Правило 4. Если число является результатом промежуточных действий, то следует сохранить в нем на 1-2 цифры больше, чем указано в правилах 1-3.
§4. Связь между числом количества верных цифр
и относительной погрешностью.
Пусть .
Определение. Цифра приближенного значения а называется верной, если модуль его погрешности не превосходит половины единицы этого разряда.
.
Очевидно, что все цифры, стоящие слева от верной цифры – верные.
Пример. Пусть х=27,421, а=27,381, .
Выясним, какие цифры верные в приближении а?
4 – , следовательно, 4 – неверная;
8 – , следовательно, 8 – неверная;
3 – , следовательно, 3 – верная.
3,2,7 – верные цифры.
Пусть известно количество n верных значащих цифр в приближении а, тогда а запишем:
.
Так как цифра, стоящая в разряде -(n-1) верна, то погрешность
,
тогда .
В качестве границы относительной погрешности можно взять .
Итак, доказана теорема 1.
Теорема 1. Если приближение имеет n верных значащих цифр, то число является границей его относительной погрешности.
Теорема устанавливает связь между числами верных значений и его относительной погрешностью.
Замечание. Пусть приближение имеет n верных значащих цифр и – его первая значащая цифра, тогда число является границей относительной погрешности.
Пример. .
Итак, граница относительной погрешности приближенного значения зависит от первой значащей цифры , количества верных цифр приближения, но не зависит от порядка приближения.
Теорема 2. Если граница относительной погрешности приближения равна , то приближение имеет не менее n значащих цифр.
Доказательство. Пусть