Реферат: Знакочередующиеся и знакопеременные ряды
+++…
сходится, а значит, сходится и исходный ряд .
В случае > 1, начиная с некоторого номера N, будет выполняться неравенство
> 1, или > > 0.
Следовательно, 0, и ряд расходится, так как не выполнен необходимый признак сходимости. ►
Замечание. Если
1,
Или не существует, то признак Даламбера ответа о сходимости или расходимости ряда не дает.
Примеры. Исследовать на сходимость следующие ряды:
1. .
◄ Для данного ряда имеем
, .
Тогда
.
По признаку Даламбера ряд сходится. ►
2. .
◄ Имеем
, = ;
.
Данный ряд расходится. ►
2. Признак Коши
Теорема 2 (признак Коши). Пусть дан ряд
, . (1)
Если существует конечный предел
,
то 1) при ряд сходится;2) при ряд расходится.
◄ 1) Пусть . Возьмем число q такое, что . Так как существует предел
,
где , то, начиная с некоторого номера N , будет выполняться неравенство .