Реферат: Знакочередующиеся и знакопеременные ряды
◄ Возьмем четную частичную сумму S2n этого ряда и запишем ее в виде
S2n = (a1 – a2) + (a3 – a4) + … + (a2n-1 – a2n).
Из условия теоремы следует, что разности в скобках положительны и, значит, S2n > 0,
причем с возрастанием n частичная сумма S2n возрастает. Эту сумму можно записать
и так:
S2n = a1 – (a2 – a3) – (a4 – a5) – … – (a2n-2 – a2n-1) – a2n.
Здесь каждая скобка положительна, откуда следует, что
S2n < a1 (n = 1, 2, … ).
Итак, последовательность { S2n } монотонно возрастает и ограничена. Следовательно,
она имеет предел
,
причем
Для нечетной частичной суммы S2n+1 будем иметь
S2n+1 = S2n + a2n+1 (n = 1, 2, … ).
По доказанному
,
А по условию теоремы
Поэтому существует предел
.
Таким образом, доказано, что
,
т.е. данный ряд сходится. Из неравенства следует, в частности, положительность суммы ряда. ►
Замечание. Теорема остается справедливой в части сходимости, если условие монотонности последовательности { an } будет выполняться для всех номеров n, начиная с некоторого номера N.
Пример. Знакочередующийся ряд
сходится, так как
и