Реферат: Знакочередующиеся и знакопеременные ряды
сходится по признаку Лейбница, но ряд, составленный из абсолютных величин его членов,
– это гармонический ряд, который расходится.
Определение. Знакопеременный числовой ряд
называется абсолютно сходящимся, если сходится ряд
.
Ряд
называется условно сходящимся, если он сходится, а ряд
расходится.
Пример 2. Числовой ряд
(плюс, два минуса, плюс, два минуса и т.д.) является абсолютно сходящимся, так как ряд, составленный из абсолютных величин его членов,
,
сходится. Ряд из примера 1 является условно сходящимся.
Отметим следующие свойства абсолютно сходящихся и условно сходящихся рядов.
Теорема 6. Абсолютно сходящийся ряд при любой перестановке его членов остается абсолютно сходящимся, и его сумма не изменяется.
Замечание. Утверждение теоремы справедливо для любого сходящегося знакопостоянного ряда.
Условно сходящиеся ряды этим свойством не обладают.
Теорема 7. Если ряд сходится условно, то, каково бы ни было наперед взятое число A,
можно так переставить члены этого ряда, что преобразованный ряд будет иметь своей суммой число A.
Более того, члены условно сходящегося ряда можно представить так, что полученный после переустановки ряда будет расходящимся.
Пример. Рассмотрим условно сходящийся ряд
,
сумму которого обозначим через S. Переставим члены ряда так, чтобы за каждым положительным членом следовали два очередных отрицательных. Тогда получим ряд