Шпаргалка: Ответы на экзаменационные билеты по высшей математики

№1 Функциональные ряды

Членами являются функции, определенные в некоторой области изменения аргумента х : U1 (x )+ U 2 ( x )+…+ Un ( x )+… Придавая х какое-либо значение х0 из области определения функций Un ( x ), получим числовой ряд U 1 ( x 0 )+ U 2 ( x 0 )+…+ Un ( x 0 )+… Этот ряд может сходиться или расходиться. Если он сходится, то точка х0 называется точкой сходимости функционального ряда. Если при х=х0 ряд расходится, то точка х0 называется точкой расходимости функционального ряда. Совокупность всех точек сходимости функционального ряда называется областью его сходимости.

Функциональный ряд называется правильно сходящимся на сегменте [ a , b ], если существует такой знакоположительный сходящийся ряд b 1 + b 2 +…+ bn +…, что абсолютные величины членов данного ряда для любого значения х , принадлежащего сегменту [ a , b ], не превосходят соответствующих членов знакоположительного ряда, т. е. | Un ( x )| ≤ bn ( n =1, 2, …)

№2 Неопределенный интеграл и его свойства

Интегральное исчисление решает обратную задачу: найти F(x), зная ее производную f(x).

Функция F(x) называется первообразной, если выполняется равенство F’(x)=f(x).

Если F(x) одна из первообразных функции f(x), то любая первообразная функции f(x) на этом промежутке имеет вид F(x)+C, где С€R.

Множество всех первообразных функции f(x) называется неопределенным интегралом

Свойства:

– неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме неопределенных интегралов от каждого слагаемого в отдельности;

– постоянный множитель можно выносить за знак неопределенного интеграла.

№3 Асимптоты

Асимптотой кривой называется прямая, расстояние до которой от точки, лежащей на кривой, стремится к 0 при неограниченном удалении от начала координат этой точки по кривой.

Асимптоты бывают вертикальными, горизонтальными и наклонными.

Прямая х=a является вертикальной асимптотой графика функции y=f(x), если lim f(x)=∞ ,

x →0± a

Уравнение наклонной асимптоты будем искать в виде y=Rx+b

R = lim(y/x) ; b = lim (y – Rx)

x →0 x →0

Если y = b, то это уравнение горизонтальной асимптоты.

№4 Экстремум функции (для одной переменной)

Если функция f(x) дифференцируема на интервале (a;b) и f’(x)>0 (f’(x)<0), то f(x) возрастает (убывает) на этом промежутке. Точка х0 называется точкой максимума функции f(x), если существует такая окрестность точки х0, что для всех х, не равных х0 из этой окрестности, выполняется неравенство f(x) < f(х0 ), где х0 – точка максимума. Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум (минимум) функции называется экстремумом.

Необходимое условие экстремума: если дифференцируемая функция f(x) имеет экстремум в точке х0 , то ее производная в этой точке равна 0.

Достаточное условие экстремума: если производная меняет знак на минус, то х0 – точка максимума; если с минуса на плюс, то точка х0 – точка минимума.

№5 Производная. Ее геометрический и физический смысл.

Физический: производной функции y=f(x) в точке х0 называется предел отношения приращения функции ∆y в этой точке к вызвавшему его приращению аргумента ∆х при произвольном стремлении ∆х к 0.

Геометрический: угловой коэффициент касательной к графику функции в точке с абсциссой х0 равен значению производной этой функции в точке х0 .

№6 Замечательные пределы

lim (1+1/x)^x=e; lim (1+x)^1/x=e (e – экспонент)

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 407
Бесплатно скачать Шпаргалка: Ответы на экзаменационные билеты по высшей математики