Шпаргалка: Ответы на экзаменационные билеты по высшей математики

Матрица А-1 называется обратной к матрице А, если выполняется условие А* А-1 = А-1 *А = Е

Всякая невырожденная матрица (т.е. ∆≠0) имеет обратную.

Алгоритм вычисления обратной матрицы:

1. вычисляем определитель, составленный по данной матрице;

2. находим матрицу АТ , транспонированную к А;

3.

A11 A21 … An1

A12 A22 … An2

?????????? ??????? ??????? (?* );

4. вычисляем обратную матрицу по формуле А-1 = А* /∆А = 1/∆А* ( )

Ранг м-цы:

Минором R-го порядка произвольной м-цы А называется определитель, составленный из элементов м-цы, расположенных на пересечении каких-либо R-строк и R-столбцов.

Рангом м-цы А называется наибольший из порядков ее миноров, неравных 0.

Базисным минором называется любое из миноров м-цы А, порядок которого равен рангу А.

При элементарных преобразованиях ранг м-цы не изменяется.

Ранг ступенчатой м-цы равен количеству ее не нулевых строк.

Свойства:

– при транспонировании м-цы ее ранг не меняется;

– если вычеркнуть из м-цы нулевой ряд, то ранг не изменится.

№20 Матрицы. Операции над матрицами.

Матрицей размера m*n называется прямоугольная таблица чисел, содержащая m-строк и n-столбцов. Числа, составляющие м-цу, называются элементами м-цы.

Две м-цы А и В одного размера называются равными, если они совпадают поэлементно.

Виды: м-ца-строка; м-ца-столбец.

М-ца называется квадратной n-го порядка, если число ее строк равно числу столбцов и равно n.

Квадратная м-ца, у которой все элементы, кроме элементов главной диагонали, равны 0, называется диагональной.

Если у диагональной м-цы n-го порядка все элеметы главной диагонали равны 1, то м-ца называется единичной n-го порядка и обозначается Е.

Если все элементы м-цы равны 0, то она называется нулевой.

Операции над матрицами:

Умножение м-цы на число. Произведением м-цы А на число λ называется матрица В= λ*А, элементы которой bij = λ* aij (i=1,…,m, j=1,…,n)

Сложение м-ц. Суммой двух м-ц А и В одинакового размера m на n называется м-ца С=А+В, элементы которой Сij=aij+bij.

К-во Просмотров: 411
Бесплатно скачать Шпаргалка: Ответы на экзаменационные билеты по высшей математики