Шпаргалка: Ответы на экзаменационные билеты по высшей математики
Матрица А-1 называется обратной к матрице А, если выполняется условие А* А-1 = А-1 *А = Е
Всякая невырожденная матрица (т.е. ∆≠0) имеет обратную.
Алгоритм вычисления обратной матрицы:
1. вычисляем определитель, составленный по данной матрице;
2. находим матрицу АТ , транспонированную к А;
3.
|
4. вычисляем обратную матрицу по формуле А-1 = А* /∆А = 1/∆А* ( )
Ранг м-цы:
Минором R-го порядка произвольной м-цы А называется определитель, составленный из элементов м-цы, расположенных на пересечении каких-либо R-строк и R-столбцов.
Рангом м-цы А называется наибольший из порядков ее миноров, неравных 0.
Базисным минором называется любое из миноров м-цы А, порядок которого равен рангу А.
При элементарных преобразованиях ранг м-цы не изменяется.
Ранг ступенчатой м-цы равен количеству ее не нулевых строк.
Свойства:
– при транспонировании м-цы ее ранг не меняется;
– если вычеркнуть из м-цы нулевой ряд, то ранг не изменится.
№20 Матрицы. Операции над матрицами.
Матрицей размера m*n называется прямоугольная таблица чисел, содержащая m-строк и n-столбцов. Числа, составляющие м-цу, называются элементами м-цы.
Две м-цы А и В одного размера называются равными, если они совпадают поэлементно.
Виды: м-ца-строка; м-ца-столбец.
М-ца называется квадратной n-го порядка, если число ее строк равно числу столбцов и равно n.
Квадратная м-ца, у которой все элементы, кроме элементов главной диагонали, равны 0, называется диагональной.
Если у диагональной м-цы n-го порядка все элеметы главной диагонали равны 1, то м-ца называется единичной n-го порядка и обозначается Е.
Если все элементы м-цы равны 0, то она называется нулевой.
Операции над матрицами:
Умножение м-цы на число. Произведением м-цы А на число λ называется матрица В= λ*А, элементы которой bij = λ* aij (i=1,…,m, j=1,…,n)
Сложение м-ц. Суммой двух м-ц А и В одинакового размера m на n называется м-ца С=А+В, элементы которой Сij=aij+bij.