Учебное пособие: Исследование функций и построение их графиков
Исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты.
Найти интервалы возрастания и убывания функции и точки экстремума.
Найти интервалы выпуклости и вогнутости функции и точки перегиба.
Найти точки пересечения функции с осями координат.
Пример 6. Исследовать функцию
и построить ее график.
Решение. 1.Функция представляет многочлен 3-й степени, поэтому она определена и непрерывна для всех .
2. Найдем значение функции при (-):
а также .
Таким образом, исследуемая функция является функцией общего вида и ее требуется исследовать на всей числовой оси.
Функция непрерывна на всей числовой оси, точек разрыва второго рода не имеет, следовательно, у нее вертикальные асимптоты отсутствуют.
Рассмотрим поведение функции в бесконечности.
Найдем пределы:
;
Так как пределы не являются конечными, то горизонтальных асимптот у функции нет.
Далее проверим наличие у функции наклонных асимптот. Вычислим предел:
.
Поскольку предел не является конечными, то наклонные асимптоты также отсутствуют. Если бы предел являлся конечн?