Учебное пособие: Исследование функций и построение их графиков

Исследовать поведение функции в бесконечности, найти горизонтальные и наклонные асимптоты.

Найти интервалы возрастания и убывания функции и точки экстремума.

Найти интервалы выпуклости и вогнутости функции и точки перегиба.

Найти точки пересечения функции с осями координат.

Пример 6. Исследовать функцию

и построить ее график.

Решение. 1.Функция представляет многочлен 3-й степени, поэтому она определена и непрерывна для всех .

2. Найдем значение функции при (-):


а также .

Таким образом, исследуемая функция является функцией общего вида и ее требуется исследовать на всей числовой оси.

Функция непрерывна на всей числовой оси, точек разрыва второго рода не имеет, следовательно, у нее вертикальные асимптоты отсутствуют.

Рассмотрим поведение функции в бесконечности.

Найдем пределы:

;

Так как пределы не являются конечными, то горизонтальных асимптот у функции нет.

Далее проверим наличие у функции наклонных асимптот. Вычислим предел:

.

Поскольку предел не является конечными, то наклонные асимптоты также отсутствуют. Если бы предел являлся конечн?

К-во Просмотров: 394
Бесплатно скачать Учебное пособие: Исследование функций и построение их графиков