Учебное пособие: Матрицы. Дифференциальные уравнения
6. Если .
Виды неопределенностей
.
!!! Основной задачей при вычислении пределов является устранение неопределенностей с помощью алгебраических преобразований.
1) для неопределенности вида :
- Если в числителе и знаменателе сложные степенные или показательные функции и . Вычисление пределов в случае отношения степенных функций производится путем вынесения за скобку в числителе и знаменателе дроби переменной x в наибольшей степени среди всех слагаемых дроби (неопределенность устраняется после сокращения дроби и применения основных теорем о пределах); в случае показательных функций за скобку выносится наибольшее слагаемое.
- Правило Лопиталя: Предел отношения двух бесконечно малых или бесконечно больших функций равен пределу отношения их производных (конечному или бесконечному), если последний существует в указанном смысле, т.е.
.
2) для неопределенности вида :
- Если возможно, то числитель и знаменатель разложить на множители. Неопределенность устраняется после сокращения дроби.
- Числитель и знаменатель дроби домножить на одно и то же выражение, приводящее к формулам сокращенного умножения. Неопределенность устраняется после сокращения дроби.
Формулы сокращенного умножения:
(a-b)(a+b)= a2 -b2
(a-b)(a2 +ab+b2 )=a3 -b3
- Правило Лопиталя.
3) для неопределенности вида [0]:
- Выражение, представляющее собой произведение функций, нужно преобразовать в частное (не меняя смысла). После чего неопределенность преобразуется к виду или
.
4) для неопределенности вида []:
- Если функция, стоящая под знаком предела, представляет собой сумму или разность дробей, то неопределенность или устраняется, или приводится к типу после приведения к общему знаменателю.
- Если функция, стоящая под знаком предела, представляет собой разность или сумму иррациональных выражений, то неопределенность или устраняется, или приводится к типу путем домножения и деления функции на одно и то же выражение, приводящее к формулам сокращенного умножения.
5) для неопределенности вида []:
- Выражение, стоящее под знаком предела представляет собой степенно-показательную функцию (в основании которой необходимо выделить целую часть дроби). Неопределенность устраняется при помощи выделения второго замечательного предела.
Формула второго замечательного предела:
;
.
ПРОИЗВОДНАЯ
Определение: Производной функции y = f ( x ) называется предел отношения приращения функции к приращению независимой переменной при стремлении последнего к 0 (если этот предел существует):
Если функции u ( x ) и v ( x ) дифференцируемые, то справедливы следующие правила дифференцирования :
(u+v) ¢ =u ¢ +v ¢
(u-v) ¢ =u ¢ -v ¢
(uv) ¢ =u ¢ v+uv ¢