Дипломная работа: Дослідження універсальних абелевих алгебр
На підставі леми 2.2 містимо, що
Отже, .
А тому що , те, тобто
4) Позначимо . Нехай
і задовольняє визначенню 2.1.
Визначимо бінарне відношення на в такий спосіб
тоді й тільки тоді, коли
Аналогічно, як і вище, неважко показати, що – конгруенція, що задовольняє визначенню 2.1.
Це й означає, що
Теорема доведена.
Як наслідку, з доведеної теореми одержуємо аналогічні властивості централізаторів у групах і мультікільцях.
3. Формаційні властивості нильпотентних алгебр
Як ми вже відзначали, усе алгебри вважаються приналежними деякому фіксованому мальцевскому різноманіттю й використовуються стандартні позначення й визначення з[1].
Нагадаємо, що для й – конгруенції на алгебрі – говорять, що централізує (записується: ), якщо на існує така конгруенція , що:
1) із завжди треба
2) для будь-якого елемента завжди виконується
3) якщо , те
Очевидно, що для будь-якої конгруенції на алгебрі конгруенція централізує . У цьому випадку .
Помітимо, що якщо й – конгруенції на групі й , те для нормальних підгруп і групи й будь-яких елементів , мають місце наступні співвідношення: