Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков

Qz =–2du2 ,

Qu =1–2u-4dzu .

Имеем:


=0,

(-3–λ) (-1–λ)=0,

λ1 =–3, λ2 =–1,

Корни λ12 –действительные и одного знака (–). Следовательно, точка N2 (0,1) – устойчивый узел.

Дадим распределение состояний равновесия системы (2.1) в виде таблицы 1.

Таблица 1

d O (0,0) A (-d, 0) B (-d, d) C()
N0 N1 N2
(-∞; 0) Уст.у. Неуст.у. Уст.у Седло Седло Уст.у. Седло
(0;∞) Неуст.у. Уст.у. Неуст.у. Седло Седло Уст.у. Седло

Положение кривой (2.3) и расположение относительно их состояний равновесия при d<0 и d>0 представлено на рис. 1 (а, б).

Поведение траекторий системы (2.1) в целом при d<0 и d>0 представлено на рис. 3 (а, б) приложения А.

Исследуя вид кривых (2.2) и расположение относительно их состояний равновесия, убеждаемся, что система (2.1) не имеет предельных циклов, так как Воробьёв А.П. [10] доказал, что для систем, правые части которых есть полиномы второй степени, предельный цикл может окружать только точку типа фокуса. Учитывая расположение состояний равновесия относительно кривых (2.2), являющиеся интегралами системы (2.1) не может существовать предельных циклов, окружающих несколько состояний равновесия.


a) d<0

б) d>0

Рис. 1

2.2 Исследование одной системы из второго класса построенных двумерных стационарных систем

Рассмотрим систему (1.1) в предположении, что в122 =1, а1 =

и коэффициенты определяются формулами (1.19). Тогда система (1.1) будет иметь вид:

(2.7)

Интегральные кривые в этом случае имеют вид:

4 y 2 –4 xy + x 2 + dy =0 , (2.8)

- x + y =0 . (2.9)

Найдём состояния равновесия системы (2.7). Для этого приравняем правые части системы нулю:

Решая эту систему, получим две пары точек, которые являются точками покоя системы (2.7): О (0,0), А().

Исследуем поведение траекторий решений системы (2.7) в окрестностях состояний равновесия О (0,0), А().

1 . Исследуем точку О (0,0).

К-во Просмотров: 662
Бесплатно скачать Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков