Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков

Корни λ12 –действительные и различных знаков, значит точка (0,0) – седло.

Теперь дадим распределение состояний равновесия системы (2.7) в виде таблицы 2.

Таблица 2

d O (0,0) A()
N0 N1 N2
(-∞; 0)

Топологическое

Узел

Неустойчивый

Узел

Седло

Устойчивый

Узел

Седло

(0;∞)

Топологическое

Узел

Устойчивый

Узел

Седло

Устойчивый

Узел

Седло

Положение кривых (2.8), (2.9) и расположение относительно их состояний равновесия при d<0 и d>0 даётся соответственно рис. 2 (а, б).

Поведение траекторий системы (2.7) в целом при d<0, d>0 представлено на рис. 4 (а, б) приложения Б.

Так как Воробьёв А.П. [10] доказал, что для систем, правые части которых есть полиномы второй степени, предельный цикл может окружать только точку типа фокуса, тогда исследуя вид кривых (2.8), (2.9) и расположение относительно их состояний равновесия, убеждаемся, что система (2.7) не имеет предельных циклов.

a) d<0


б) d>0

Рис. 2


Заключение

К-во Просмотров: 668
Бесплатно скачать Дипломная работа: Качественное исследование в целом двумерной квадратичной стационарной системы с двумя частными интегралами в виде кривых второго и первого порядков