Контрольная работа: Математический анализ
Оценить погрешность определенного интеграла от функции sin(x) в пределах [0,2/3π] по квадратурной формуле наивысшей алгебраической степени точности, полученной в задаче № 10в, по сравнению с аналитически точным. Проделать то же самое над усеченным степенным рядом, представляющим sin(x), в который x входит со степенью не выше третьей.
Решение
???????? ?? ???????? [0,2/3 π] ? ??????? [-1,1]: ??? ????? ????????????? ???????? ??????????????? x= α + βt . ????????? ???????
Учитывая, что dx = βdt, получим:
Применим квадратурную формулу:
Вычислим аналитически:
Найдем погрешность вычисления:
Проделаем те же операции над усеченным степенным рядом, представляющем sin(x):
Перейдем от пределов [0; 2π/3] к пределам [-1; 1], для этого используем линейное преобразование x = α +βt. Составим систему уравнений:
Учитывая, что dx = βdt, получим
Применим квадратурную формулу, получим
Найдем погрешность вычисления
Задача 14
Степенными полиномами Чебышева Ti относительно переменной x (|x| < 1) являются решениями линейного разностного уравнения второго порядка:
Ti+2 - 2x Ti+1 + Ti = 0,
с начальными условиями T0 = 1 и T1 = x.
Найти аналитическое выражение и вычислить значения полинома Чебышева i-й степени, если и i = 4. Проверить вычисления непосредственно по заданной рекуррентной формуле. Найти положение нулей и экстремумов у многочленов Чебышева в общем виде и для заданных выше x и i. Оценить модуль максимально возможного значения полинома в точках экстремумов.
Решение.
Исходя из того, что
xi = |yi | надо найти T4 т.е. для i = 4
Из Ti +2 - 2xTi +1 + Ti = 0 следует, что
T2 = 2xT1 - T0
T3 = 2xT2 - T1 = 2x(2xT1 - T0 ) - T1