Контрольная работа: Высшая математика Матрица
8.2 (325.Б7).Найдите координаты её центра симметрии .
8.3 (Д06.РП).Найдите действительную и мнимую полуоси .
8.4 (267.БЛ). Запишите уравнение фокальной оси .
8.5. Постройте данную гиперболу .
Решение :
Выделим полные квадраты
4(x2 – 6x + 9) – 36 – (y2 – 4y + 4) + 4 + 28 = 0
4(x – 3)2 – (y – 2)2 – 4 = 0
4(x – 3)2 – (y – 2)2 = 4
((x – 3)2/1) – ((y – 2)2/4) = 1
Положим x1 = x – 3 , y1 = y – 2 , тогда x1 2/1 – y1 2/4 =1 .
Данная кривая является гиперболой .
Определим её центр
x1 = x – 3 = 0 , x = 3
y1 = y – 2 = 0 , y = 2
(3 ; 2) - центр .
Действительная полуось a =1 .
Мнимая полуось b =2 .
Уравнение асимптот гиперболы
y1 = ± b/ax1
(y – 2) = (± 2/1)*(x – 3)
y –2 = 2x – 6 и y – 2 = -2(x – 8)
2x – y – 4 = 0 2x + 2y – 8 = 0
x + y – 4 = 0 .
Определим фокусы гиперболы
F1 (-c ; 0) , F2 (c ; 0)
c2 = a2 + b2 ; c2 = 1 + 4 = 5
c = ±√5
F1 (-√5; 0) , F2 (√5 ; 0).