Контрольная работа: Высшая математика Матрица
Уравнение F1 ′ F2 ′ (x – 3 + √5) / (3 + √5 – 3 + √5) = (y – 2) /(2 – 2) ; y = 2
Ответ: (3 ; 2) , действительная полуось a =1 , мнимая полуось b =2, (x – 3 + √5) / (3 + √5 – 3 + √5) = (y – 2) /(2 – 2) ; y = 2 .
16.Дана кривая y2 + 6x + 6y + 15 = 0.
16.1.Докажите , что эта кривая – гипербола .
16.2(058.РП). Найдите координаты её вершины .
16.3(2П9). Найдите значения её параметра p .
16.4(289.РП). Запишите уравнение её оси симметрии .
16.5.Постройте данную параболу .
Решение :
Выделим полный квадрат при переменной y
(y2 + 6y + 9) + 6x + 6 = 0
(y + 3)2 = - 6(x + 1) .
Положим y1 = y + 3 , x1 = x + 1 .
Получим
y1 2 = ±6x1 .
Это уравнение параболы вида y2 = 2px , где p = -3 .
Данная кривая является гиперболой .
Так как p<0 , то ветви параболы в отрицательную сторону. Координаты вершины параболы y + 3 = 0 x + 1 = 0
y = -3 x = -1
(-1 ; -3) – вершина параболы .
Уравнение оси симметрии y = -3.
Ответ : (-1 ; -3) – вершина параболы , p = -3 , уравнение оси симметрии y = -3 .