Реферат: Анализ обобщенных функций
Можно вычислить производные
(t+ )' = q(t), (t- )' = -q(-t),
а также
n
2.1 Свертка обобщенных функций
Пусть f(t) и g(t) - интегрируемые на любом конечном интервале функции. Свертка функций f(t) и g(t) определяется соотношением
если только интеграл существует и интегрируем по любому конечному интервалу переменной х. Равенство двух интегралов легко проверить, сделав замену z= x-t.
Если f(t), g(t) – регулярные обобщенные функции и j(х) ÎK, то можно записать
Произведение f(t) g(u) можно рассматривать как прямое произведение f(t) х g(u), так что
Это соотношение определяет свертку обощенных функций f(t), g(t) ÎK', включая и сингулярные обобщенные функции.
Свертка обобщенных функций обладает следующими свойствами:
1)
2)
3)
4) если то
(3)
Приведем доказательство последнего соотношения. Действительно, для j(х) Î K
или
что и доказывает соотношение (3).
Примеры: